Lesson 7: Comparing Linear Functions and Graphs

Student Outcomes

- Students compare the properties of two functions that are represented in different ways via tables, graphs, equations, or written descriptions.
- Students use rate of change to compare linear functions.

Lesson Notes

The Fluency Exercise included in this lesson takes approximately 10 minutes and should be assigned either at the beginning or at the end of the lesson.

Classwork

Exploratory Challenge/Exercises 1–4 (20 minutes)

Students work in small groups to complete Exercises 1–4. Groups can select a method of their choice to answer the questions and their methods will be a topic of discussion once the Exploratory Challenge is completed. Encourage students to discuss the various methods (e.g., graphing, comparing rates of change, using algebra) as a group before they begin solving.

Exploratory Challenge/Exercises 1–4

Each of Exercises 1–4 provides information about two functions. Use that information given to help you compare the two functions and answer the questions about them.

1. Alan and Margot each drive from City A to City B, a distance of 147 miles. They take the same route and drive at constant speeds. Alan begins driving at 1:40 p.m. and arrives at City B at 4:15 p.m. Margot's trip from City A to City B can be described with the equation \(y = 64x \), where \(y \) is the distance traveled in miles and \(x \) is the time in minutes spent traveling. Who gets from City A to City B faster?

 Student solutions will vary. Sample solution is provided.

 It takes Alan \(\frac{155}{155} \) minutes to travel the 147 miles. Therefore, his constant rate is \(\frac{147}{155} \) miles per minute.

 Margot drives 64 miles per hour (60 minutes). Therefore, her constant rate is \(\frac{64}{60} \) miles per minute.

 To determine who gets from City A to City B faster, we just need to compare their rates in miles per minute.

 \[
 \frac{147}{155} < \frac{64}{60}
 \]

 Since Margot's rate is faster, she will get to City B faster than Alan.

Scaffolding:

Providing example language for students to reference will be useful. This might consist of sentence starters, sentence frames, or a word wall.
2. You have recently begun researching phone billing plans. Phone Company A charges a flat rate of $75 a month. A flat rate means that your bill will be $75 each month with no additional costs. The billing plan for Phone Company B is a linear function of the number of texts that you send that month. That is, the total cost of the bill changes each month depending on how many texts you send. The table below represents some inputs and the corresponding outputs that the function assigns.

<table>
<thead>
<tr>
<th>Input (number of texts)</th>
<th>Output (cost of bill in dollars)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>150</td>
<td>60</td>
</tr>
<tr>
<td>200</td>
<td>65</td>
</tr>
<tr>
<td>500</td>
<td>95</td>
</tr>
</tbody>
</table>

At what number of texts would the bill from each phone plan be the same? At what number of texts is Phone Company A the better choice? At what number of texts is Phone Company B the better choice?

Student solutions will vary. Sample solution is provided.

The equation that represents the function for Phone Company A is \(y = 75 \).

To determine the equation that represents the function for Phone Company B, we need the rate of change. (We are told it is constant.)

\[
\begin{align*}
\frac{60 - 50}{150 - 50} &= \frac{10}{100} \\
&= 0.1
\end{align*}
\]

The equation for Phone Company B is shown below.

Using the assignment of 50 to 50,

\[
\begin{align*}
50 &= 0.1(50) + b \\
50 &= 5 + b \\
45 &= b
\end{align*}
\]

The equation that represents the function for Phone Company B is \(y = 0.1x + 45 \).

We can determine at what point the phone companies charge the same amount by solving the system:

\[
\begin{align*}
y &= 75 \\
y &= 0.1x + 45
\end{align*}
\]

\[
\begin{align*}
75 &= 0.1x + 45 \\
30 &= 0.1x \\
300 &= x
\end{align*}
\]

After 300 texts are sent, both companies would charge the same amount, $75. More than 300 texts means that the bill from Phone Company B will be higher than Phone Company A. Less than 300 texts means the bill from Phone Company A will be higher.
3. The function that gives the volume of water, \(y \), that flows from Faucet A in gallons during \(x \) minutes is a linear function with the graph shown. Faucet B’s water flow can be described by the equation \(y = \frac{5}{6} x \), where \(y \) is the volume of water in gallons that flows from the faucet during \(x \) minutes. Assume the flow of water from each faucet is constant. Which faucet has a faster rate of flow of water? Each faucet is being used to fill a tub with a volume of 50 gallons. How long will it take each faucet to fill its tub? How do you know?

![Graph of Volume vs. Time for Faucets A and B](image)

Suppose the tub being filled by Faucet A already had 15 gallons of water in it, and the tub being filled by Faucet B started empty. If now both faucets are turned on at the same time, which faucet will fill its tub fastest?

Student solutions will vary. Sample solution is provided.

The slope of the graph of the line is \(\frac{4}{7} \) because \((7, 4)\) is a point on the line that represents 4 gallons of water that flows in 7 minutes. Therefore, the rate of water flow for Faucet A is \(\frac{4}{7} \). To determine which faucet has a faster flow of water, we can compare their rates.

\[
\frac{4}{7} < \frac{5}{6}
\]

Therefore, Faucet B has a faster rate of water flow.

<table>
<thead>
<tr>
<th>Faucet A</th>
<th>Faucet B</th>
<th>The tub filled by Faucet A that already has 15 gallons in it</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y = \frac{4}{7} x)</td>
<td>(y = \frac{5}{6} x)</td>
<td>(50 = \frac{4}{7} x + 15)</td>
</tr>
<tr>
<td>50 = (\frac{7}{4}) = (x)</td>
<td>50 = (\frac{5}{6}) = (x)</td>
<td>35 = (\frac{4}{7}) = (x)</td>
</tr>
<tr>
<td>350 = (\frac{35}{4}) = (x)</td>
<td>60 = (\frac{60}{10}) = (x)</td>
<td>61.25 = (x)</td>
</tr>
</tbody>
</table>

It will take 87.5 minutes to fill a tub of 50 gallons.

It will take 60 minutes to fill a tub of 50 gallons.

Faucet B will fill the tub first because it will take Faucet A 61.25 minutes to fill the tub, even though it already has 15 gallons in it.
4. Two people, Adam and Bianca, are competing to see who can save the most money in one month. Use the table and the graph below to determine who will save the most money at the end of the month. State how much money each person had at the start of the competition. (Assume each is following a linear function in his or her saving habit.)

Adam’s Savings:

The slope of the line that represents Adam’s savings is \(3\); therefore, the rate at which Adam is saving money is \$3 per day. According to the table of values for Bianca, she is also saving money at a rate of \$3 per day:

\[
\begin{align*}
\frac{26 - 17}{8 - 5} &= \frac{9}{3} = 3 \\
\frac{38 - 26}{12 - 8} &= \frac{12}{4} = 3 \\
\frac{62 - 26}{20 - 8} &= \frac{36}{12} = 3
\end{align*}
\]

Therefore, at the end of the month, Adam and Bianca will both have saved the same amount of money.

According to the graph for Adam, the equation \(y = 3x + 3\) represents the function of money saved each day. On day zero, he had \$3.

The equation that represents the function of money saved each day for Bianca is \(y = 3x + 2\) because, using the assignment of 17 to 5

\[
\begin{align*}
17 &= 3(5) + b \\
17 &= 15 + b \\
2 &= b.
\end{align*}
\]

The amount of money Bianca had on day zero was \$2.

Bianca’s Savings:

<table>
<thead>
<tr>
<th>Input (Number of Days)</th>
<th>Output (Total amount of money in dollars)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>17</td>
</tr>
<tr>
<td>8</td>
<td>26</td>
</tr>
<tr>
<td>12</td>
<td>38</td>
</tr>
<tr>
<td>20</td>
<td>62</td>
</tr>
</tbody>
</table>
Discussion (5 minutes)

To encourage students to compare different means of presenting linear functions, have students detail the different ways linear functions were described throughout these exercises. Use the following questions to guide the discussion.

- Was one style of presentation easier to work with over the others? Does everyone agree?
- Was it easier to read off certain pieces of information about a linear function (its initial value, its constant rate of change, for instance) from one presentation of that function over another?

Closing (5 minutes)

Summarize, or ask students to summarize, the main points from the lesson:

- We know that functions can be expressed as equations, graphs, tables, and using verbal descriptions. Regardless of the way that a function is expressed, we can compare it with other functions.

Exit Ticket (5 minutes)

Fluency Exercise (10 minutes): Multi-Step Equations II

Rapid White Board Exchange (RWBE): During this exercise, students solve nine multi-step equations. Each equation should be solved in about a minute. Consider having students work on personal white boards, showing their solutions after each problem is assigned. The nine equations and their answers are at the end of the lesson. Refer to the Rapid White Board Exchanges section in the Module Overview for directions to administer a RWBE.
Lesson 7: Comparing Linear Functions and Graphs

Exit Ticket

Brothers Paul and Pete walk 2 miles to school from home. Paul can walk to school in 24 minutes. Pete has slept in again and needs to run to school. Paul walks at a constant rate, and Pete runs at a constant rate. The graph of the function that represents Pete’s run is shown below.

a. Which brother is moving at a greater rate? Explain how you know.

b. If Pete leaves 5 minutes after Paul, will he catch up to Paul before they get to school?
Exit Ticket Sample Solutions

Brothers Paul and Pete walk 2 miles to school from home. Paul can walk to school in 24 minutes. Pete has slept in again and needs to run to school. Paul walks at a constant rate, and Pete runs at a constant rate. The graph of the function that represents Pete’s run is shown below.

a. Which brother is moving at a greater rate? Explain how you know.

Paul takes 24 minutes to walk 2 miles; therefore, his rate is \(\frac{1}{12} \) miles per minute.

Pete can run 8 miles in 60 minutes; therefore, his rate is \(\frac{8}{60} \), or \(\frac{2}{15} \) miles per minute.

Since \(\frac{2}{15} > \frac{1}{12} \), Pete is moving at a greater rate.

b. If Pete leaves 5 minutes after Paul, will he catch up to Paul before they get to school?

Student solution methods will vary. Sample answer is shown.

Since Pete slept in, we need to account for that fact. So, Pete’s time would be decreased. The equation that would represent the number of miles Pete runs, \(y \), in \(x \) minutes, would be

\[y = \frac{2}{15}(x - 5) \]

The equation that would represent the number of miles Paul walks, \(y \), in \(x \) minutes, would be \(y = \frac{1}{12}x \).

To find out when they meet, solve the system of equations:

\[
\begin{align*}
2 \frac{2}{15}x - 2 & = \frac{1}{12}x \\
\frac{2}{15}x - \frac{2}{12}x + \frac{2}{3} & = \frac{1}{12}x - \frac{1}{12}x + \frac{2}{3} \\
x & = \frac{20}{3} \times \frac{1}{20} \\
& = \frac{3}{3} \\
x & = \frac{3}{3} \\
y & = \frac{1}{12} \left(\frac{40}{3} \right) = \frac{10}{9} \\
\text{or} \\
y & = \frac{2}{15} \times \frac{40}{3} = \frac{2}{3}
\end{align*}
\]

Pete would catch up to Paul in \(\frac{40}{1} \) minutes, which occurs \(\frac{10}{9} \) miles from their home. Yes, he will catch Paul before they get to school because it is less than the total distance, two miles, to school.
Problem Set Sample Solutions

1. The graph below represents the distance in miles, y, Car A travels in x minutes. The table represents the distance in miles, y, Car B travels in x minutes. It is moving at a constant rate. Which car is traveling at a greater speed? How do you know?

Car A:

![Graph showing distance traveled in miles vs time in minutes for Car A.]

Based on the graph, Car A is traveling at a rate of 2 miles every 3 minutes, $m = \frac{2}{3}$. From the table, the constant rate that Car B is traveling is

\[
\frac{25 - 12.5}{30 - 15} = \frac{12.5}{15} = \frac{25}{30} = \frac{5}{6}.
\]

Since $\frac{5}{6} > \frac{2}{3}$, Car B is traveling at a greater speed.

Car B:

<table>
<thead>
<tr>
<th>Time in minutes (x)</th>
<th>Distance in miles (y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>12.5</td>
</tr>
<tr>
<td>30</td>
<td>25</td>
</tr>
<tr>
<td>45</td>
<td>37.5</td>
</tr>
</tbody>
</table>

Based on the graph, Car A is traveling at a rate of 2 miles every 3 minutes, $m = \frac{2}{3}$. From the table, the constant rate that Car B is traveling is

\[
\frac{25 - 12.5}{30 - 15} = \frac{12.5}{15} = \frac{25}{30} = \frac{5}{6}.
\]

Since $\frac{5}{6} > \frac{2}{3}$, Car B is traveling at a greater speed.
2. The local park needs to replace an existing fence that is 6 feet high. Fence Company A charges $7,000 for building materials and $200 per foot for the length of the fence. Fence Company B charges are based solely on the length of the fence. That is, the total cost of the 6-foot high fence will depend on how long the fence is. The table below represents some inputs and their corresponding outputs that the cost function for Fence Company B assigns. It is a linear function.

<table>
<thead>
<tr>
<th>Input (length of fence in feet)</th>
<th>Output (cost of bill in dollars)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>26,000</td>
</tr>
<tr>
<td>120</td>
<td>31,200</td>
</tr>
<tr>
<td>180</td>
<td>46,800</td>
</tr>
<tr>
<td>250</td>
<td>65,000</td>
</tr>
</tbody>
</table>

a. Which company charges a higher rate per foot of fencing? How do you know?

Let \(x \) represent the length of the fence and \(y \) represent the total cost.

The equation that represents the function for Fence Company A is \(y = 200x + 7,000 \). So, the rate is 200 dollars per foot of fence.

The rate of change for Fence Company B is given by:

\[
\frac{26,000 - 31,200}{100 - 120} = \frac{-5,200}{-20} = 260
\]

Fence Company B charges $260 per foot of fence, which is a higher rate per foot of fence length than Fence Company A.

b. At what number of the length of the fence would the cost from each fence company be the same? What will the cost be when the companies charge the same amount? If the fence you need were 190 feet in length, which company would be a better choice?

Student solutions will vary. Sample solution is provided.

The equation for Fence Company B is

\[y = 260x. \]

We can find out at what point the fence companies charge the same amount by solving the system

\[
\begin{align*}
 y &= 200x + 7000 \\
 y &= 260x
\end{align*}
\]

\[
\begin{align*}
 200x + 7,000 &= 260x \\
 7,000 &= 60x \\
 116.6666 \ldots &= x \\
 116.7 &\approx x
\end{align*}
\]

At 116.7 feet of fencing, both companies would charge the same amount (about $30,340). Less than 116.7 feet of fencing means that the cost from Fence Company A will be more than Fence Company B. More than 116.7 feet of fencing means that the cost from Fence Company B will be more than Fence Company A. So, for 190 feet of fencing, Fence Company A is the better choice.
3. The equation \(y = 123x \) describes the function for the number of toys, \(y \), produced at Toys Plus in \(x \) minutes of production time. Another company, #1 Toys, has a similar function, also linear, that assigns the values shown in the table below. Which company produces toys at a slower rate? Explain.

<table>
<thead>
<tr>
<th>Time in minutes ((x))</th>
<th>Toys Produced ((y))</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>600</td>
</tr>
<tr>
<td>11</td>
<td>1,320</td>
</tr>
<tr>
<td>13</td>
<td>1,560</td>
</tr>
</tbody>
</table>

We are told that #1 Toys produces toys at a constant rate. That rate is:

\[
\frac{1320 - 600}{11 - 5} = \frac{720}{6} = 120
\]

The rate of production for #1 Toys is 120 toys per minute. The rate of production for Toys Plus is 123 toys per minute. Since 120 is less than 123, #1 Toys produces toys at a slower rate.

4. A train is traveling from City A to City B, a distance of 320 miles. The graph below shows the number of miles, \(y \), the train travels as a function of the number of hours, \(x \), that have passed on its journey. The train travels at a constant speed for the first four hours of its journey and then slows down to a constant speed of 48 miles per hour for the remainder of its journey.

[Graph showing distance in miles vs. time in hours]
a. How long will it take the train to reach its destination?

Student solutions will vary. Sample solution is provided.

We see from the graph that the train travels 220 miles during its first four hours of travel. It has 100 miles remaining to travel, which it shall do at a constant speed of 48 miles per hour. We see that it will take about 2 hours more to finish the trip:

\[
100 = 48x \\
2.08333... = x \\
2.1 \approx x.
\]

This means it will take about 6.1 hours \((4 + 2.1 = 6.1)\) for the train to reach its destination.

b. If the train had not slowed down after 4 hours, how long would it have taken to reach its destination?

\[
320 = 55x \\
5.8181818... = x \\
5.8 \approx x
\]

The train would have reached its destination in about 5.8 hours had it not slowed down.

c. Suppose after 4 hours, the train increased its constant speed. How fast would the train have to travel to complete the destination in 1.5 hours?

Let \(m\) represent the new constant speed of the train.

\[
100 = m(1.5) \\
66.666... = x \\
66.7 \approx x
\]

The train would have to increase its speed to about 66.7 miles per hour to arrive at its destination 1.5 hours later.
5.

a. A hose is used to fill up a 1,200 gallon water truck. Water flows from the hose at a constant rate. After 10 minutes, there are 65 gallons of water in the truck. After 15 minutes, there are 82 gallons of water in the truck. How long will it take to fill up the water truck? Was the tank initially empty?

Student solutions will vary. Sample solution is provided.

Let \(x \) represent the time in minutes it takes to pump \(y \) gallons of water. Then, the rate can be found as follows:

<table>
<thead>
<tr>
<th>Time in minutes ((x))</th>
<th>Amount of water pumped in gallons ((y))</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>65</td>
</tr>
<tr>
<td>15</td>
<td>82</td>
</tr>
</tbody>
</table>

\[
65 - 82 = -17 \\
10 - 15 = -5 = 17 \\
5 \\
\]

Since the water is pumping at a constant rate, we can assume the equation is linear. Therefore, the equation for the volume of water pumped from the hose is found by

\[
65 = \frac{17}{5}(10) + b \\
65 = 34 + b \\
31 = b \\
\]

The equation is \(y = \frac{17}{5}x + 31 \), and we see that the tank initially had 31 gallons of water in it. The time to fill the tank is given by

\[
1200 = \frac{17}{5}x + 31 \\
1169 = \frac{17}{5}x \\
343.8235 \ldots = x \\
343.8 \approx x \\
\]

It would take about 344 minutes or about 5.7 hours to fill up the truck.

b. The driver of the truck realizes that something is wrong with the hose he is using. After 30 minutes, he shuts off the hose and tries a different hose. The second hose flows at a constant rate of 18 gallons per minute. How long now does it take to fill up the truck?

Since the first hose has been pumping for 30 minutes, there are 133 gallons of water already in the truck. That means the new hose only has to fill up 1,067 gallons. Since the second hose fills up the truck at a constant rate of 18 gallons per minute, the equation for the second hose is \(y = 18x \).

\[
1067 = 18x \\
59.27 = x \\
59.3 \approx x \\
\]

It will take the second hose about 59.3 minutes (or a little less than an hour) to finish the job.
Multi-Step Equations II

1. \(2(x + 5) = 3(x + 6)\)
 \(x = -8\)

2. \(3(x + 5) = 4(x + 6)\)
 \(x = -9\)

3. \(4(x + 5) = 5(x + 6)\)
 \(x = -10\)

4. \(-(4x + 1) = 3(2x - 1)\)
 \(x = \frac{1}{5}\)

5. \(3(4x + 1) = -(2x - 1)\)
 \(x = -\frac{1}{7}\)

6. \(-3(4x + 1) = 2x - 1\)
 \(x = -\frac{1}{7}\)

7. \(15x - 12 = 9x - 6\)
 \(x = 1\)

8. \(\frac{1}{3}(15x - 12) = 9x - 6\)
 \(x = \frac{1}{2}\)

9. \(\frac{2}{3}(15x - 12) = 9x - 6\)
 \(x = 2\)