Data Driven Instruction and the Common Core
Assessment
- Common and interim every 6 to 8 weeks.
- Aligns to standards
- Assess what is taught
- Teachers see them in advance (transparency)
- Standards are meaningless unless you know how they will be

Analysis
- Test in hand **rubric in hand**
- Go deep, why they got it wrong
- Conversation with leader

Action
- Action plans should be concrete and specific
- Identify what you are going to do for whole class, specific sub-groups, and individual students
- Leader sees and agrees to the plan and follows up

Culture
- Calendaring
- School-wide PD
- Differentiated PD based on data
- School based leadership/inquiry teams

EngageNY.org
Common Core Considerations

Assessment
- Use of assessment design documents
- Emphasis on Performance Tasks

Analysis
- Preparation: Analysis of task
- Scoring: Chart skills and understandings demonstrated

Action
- Targeted instructional moves around identified priorities
Create Assessment

• Educator Actions
 o Determine when to administer assessment
 o Analyze curriculum map to determine standards to assess (taught before assessment)
 o Study assessment design documents, standards, and rubrics
 o Examine Performance Level Descriptors (PLDs)
Create Assessment

• **Enabling Conditions**
 - Access and understanding of:
 - Curriculum map
 - Assessment design documents, standards, rubrics

• **Output**
 - An interim assessment with multiple items for each standards taught prior to the assessment

EngageNY.org
1. The water level in Ricky Lake changes at an average of $-\frac{7}{16}$ inch every 3 years.

 a. Based on the rate above, how much will the water level change after one year? Show your calculations and model your answer on the vertical number line, using 0 as the original water level.

 b. How much would the water level change over a 7-year period?

 c. When written in decimal form, is your answer to part (b) a repeating decimal or a terminating decimal? Justify your answer using long division.
ELA Grade 8 Unit Assessments

| Mid-unit 1 Assessment | Analyzing Excerpts of Lyndon Johnson’s Speech “The Great Society”
This reading assessment centers on standards NYSP12ELA CCLS RI.8.2, RI.8.5, and RI.8.6. Students will read the excerpts from the speech “The Great Society” by Lyndon B. Johnson, determine the central idea, and analyze its development through the speech. Specifically, they first will complete a graphic organizer in which they analyze the speech’s structure by completing information about parts of the speech. Students will identify the main supporting idea of each part, cite evidence from the text that supports their answer, and explain how the textual evidence helped them decide on the supporting idea. After completing the graphic organizer, students then will state the central idea and explain how the parts of the speech developed this theme. They will conclude the assessment by answering several short questions related to perspective, including students’ understanding of how Johnson acknowledges opposing viewpoints, and their ability to explain what role Johnson’s series of questions that begin “Will you join in the battle …” play in developing and refining the central idea. |
| End of unit 1 Assessment | Analyzing Author’s Craft in To Kill a Mockingbird and the Poem “Solitude”: Allusions, Text Structure, Connections to Traditional Themes, and Use of Figurative Language
This reading assessment centers on standards NYSP12 ELA CCLS RL.8.4, RL.8.5, RL.8.9, and L.8.5a. In order to demonstrate their understanding of different text structures and how these structures contribute to the meaning of the texts, students will analyze the meaning and structure of Chapter 11 and contrast it to the poem “Solitude” by Emma Wheeler Wilcox. Specifically, students will read “Solitude” and two passages from Chapter 11 and then complete a graphic organizer in which they analyze the meaning and structure of each text and identify how these two texts connect to the traditional theme of the Golden Rule (RL.8.5 and RL.8.9). They will also answer selected-response and short-answer questions regarding the allusion to Ivanhoe in Chapter 11 and how this allusion enhances the understanding of the text. |
ELA Grade 2 Assessments

DA-4

1. Why was the War of 1812 called the second war for independence?

 __

 __

 __

2. How is “The Star-Spangled Banner” connected to the War of 1812?

 __

 __

 __

3. What was impressment?

 __

 __

 __
<table>
<thead>
<tr>
<th>Lesson</th>
<th>Standards Assessed</th>
<th>Text Covered</th>
<th>Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A</td>
<td>Anchor Standard 6</td>
<td>Master read plus paragraph 1</td>
<td>What is the narrator's purpose in the 1st paragraph?</td>
</tr>
<tr>
<td>1B</td>
<td>RL 2</td>
<td>P 1-2</td>
<td>What central ideas emerge in paragraphs 1 and 2?</td>
</tr>
<tr>
<td>2</td>
<td>RL 5</td>
<td>P 3</td>
<td>How does Poe manipulate (use) time in this paragraph and what is the effect?</td>
</tr>
<tr>
<td>3</td>
<td>Anchor Standard 6</td>
<td>P 4-7</td>
<td>How does the narrator’s point of view contain to develop a central idea.</td>
</tr>
<tr>
<td>4</td>
<td>RL 2-5</td>
<td>P 8-13</td>
<td>How do Poe's structural choices contribute to the development and refinement of a central idea?</td>
</tr>
</tbody>
</table>
Analysis
Item Analysis: Pre-Scoring

• Educator Actions
 o Do the task
 o Analyze each for the skills and understandings needed to complete the task

• Enabling Conditions
 o Access to:
 o Standards, PLDs, rubric, items
Item Analysis: Pre-Scoring

• Output
 o A list, per item, of:
 o Standard taught
 o Skills and understandings needed
Looking at Math student work

- When examining student work (non-multiple choice), there are three things to look for, using rigor as a lens:
 - Evidence that the student might have trouble with **procedural** aspects of the standard (calculations, solutions, etc.)
 - Evidence that the student might have trouble with **conceptual** aspects of the standard (explanations, justifications, etc.)
 - Evidence that the student might have trouble with **applications** of the standard (interpretations in context, modeling, etc.)
Students organized a 12-hour “dance-a-thon” as a fundraiser for their summer camp. The graph below represents the amount of money they raised during the first 8 hours.

What was the amount of money raised per hour during the first 8 hours?

>Show your work or explain how you determined your answer.
Annotated 8th grade item: 8.EE.5

During the next 4 hours of the dance-a-thon, the students raised money at twice the hourly rate of the first 8 hours.

On the coordinate plane on the previous page, complete the graph for the next 4 hours to represent the total amount of money raised at the dance-a-thon. Use words and numbers on the following lines to explain how you knew where to draw the graph.
Understand the connections between proportional relationships, lines, and linear equations.

5. Graph proportional relationships, interpreting the unit rate as the slope of the graph. Compare two different proportional relationships represented in different ways. For example, compare a distance-time graph to a distance-time equation to determine which of two moving objects has greater speed.

6. Use similar triangles to explain why the slope m is the same between any two distinct points on a non-vertical line in the coordinate plane; derive the equation $y = mx$ for a line through the origin and the equation $y = mx + b$ for a line intercepting the vertical axis at b.

Grade 8 Mathematics Performance Level Descriptions

<table>
<thead>
<tr>
<th>Cluster</th>
<th>Performance Level 4</th>
<th>Performance Level 3</th>
<th>Performance Level 2</th>
<th>Performance Level 1*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Students understand the connections between proportional relationships, lines, and linear equations. (8.EE.5,6)</td>
<td>Write and graph an equation ($y = mx$) to represent a proportional relationship. Interpret the unit rate as the slope of the graph of a proportional relationship to solve real-world problems. Compare two different proportional relationships represented in different ways. Use similar triangles to show that the slope is the same between any two distinct points on a non-vertical line in the coordinate plane. Derive the equation ($y = mx$) and $y = mx + b$.</td>
<td>Graph a proportional relationship given an equation, ($y = mx$). Interpret the unit rate as the slope of the graph of a proportional relationship. Compare two different proportional relationships represented in different ways. Use similar triangles to show that the slope is the same between any two distinct points on a non-vertical line in the coordinate plane. Interpret $y = mx + b$ as defining a relationship for a line with y-intercept of b.</td>
<td>Graph a proportional relationship given a table. Identify the unit rate as the slope of the graph of a proportional relationship.</td>
<td>Interpret ($y = mx$) as defining a relationship for a line with slope m through the origin.</td>
</tr>
</tbody>
</table>
For Item 8.EE.5

<table>
<thead>
<tr>
<th>Procedural</th>
<th>Conceptual</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calculate slope</td>
<td>Explain how to create a graph that represents a proportional relationship</td>
<td>Interpret slope as the unit rate in a real-world context</td>
</tr>
<tr>
<td>Create the graph of a line</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Looking at Math student work

- We’ve identified the procedural, conceptual, and application elements of the task.
- Now let’s look at student work for evidence of each.
What was the amount of money raised per hour during the first 8 hours?

Show your work or explain how you determined your answer.

\[
\begin{align*}
\text{every 4 hours, the money} & \quad \text{goes up 30 dollars so} \\
60 \times 8 &= 480 \\
30 \times 8 &= 240 \\
\text{the money went up every hour 30 dollars.}
\end{align*}
\]

Answer $\$30$ per hour
During the next 4 hours of the dance-a-thon, the students raised money at twice the hourly rate of the first 8 hours.

On the coordinate plane on the previous page, complete the graph for the next 4 hours to represent the total amount of money raised at the dance-a-thon. Use words and numbers on the following lines to explain how you knew where to draw the graph.

B/c it doubled. It's gonna increase bigger/taller on the graph. And while the hours go up, the money goes up as well.
When examining student work such as those accompanying the sample assessment open response questions, there are three things to look for:

- Evidence that the student might have trouble with **writing** (e.g., organization, mechanics)
- Evidence that the student might be struggling with **comprehension** of the complex text(s)
- Evidence that the student might be struggling to **meet the standard**
Annotated 8th grade item: CCLS: RI.8.1

• Explain how crows and ravens use their intelligence to help them find, capture, and eat food in the article “Brain Birds: Amazing Crows and Ravens.” Use two details from the article to support your answer.

• CCLS RI.8.1 Cite the textual evidence that most strongly supports an analysis of what the text says explicitly as well as inferences drawn from the text.

• (CCLS RI.8.10 By the end of the year, read and comprehend literary nonfiction at the high end of the grades 6–8 text complexity band independently and proficiently.)
Numerous examples of how crows and ravens use intelligence to help them find/capture/eat food.

Information/examples are embedded in authentic complex text that utilizes academic vocabulary (e.g., “furthermore,” “sculpt,” “inaccessible,” “strategy”).

The meaning of these words can be determined through context.
Looking at ELA student work

Explain how crows and ravens use their intelligence to help them find, capture, and eat food. Use two or more details from the article to support your answer.

Crows and ravens are known to be among the smartest birds on the planet. They would sometimes drop nuts or clam shells on hard surfaces to break them open. There were also rumors that in Japan, crows would drop nuts in front of tires at red lights. In the South Pacific, crows also make weapons from twigs and use them on prey.
Looking at ELA student work

Explain how crows and ravens use their intelligence to help them find, capture, and eat food in the article “Brain Birds: Amazing Crows and Ravens.” Use two details from the article to support your answer.

They drop nuts onto hard surfaces to break them open.
Looking at ELA student work

Explain how crows and ravens use their intelligence to help them find, capture, and eat food in the article “Brain Birds: Amazing Crows and Ravens.” Use two details from the article to support your answer.

Crows and Ravens have intelligence because they know when something gets put on the ground. Ravens have intelligence by seeing the mice. They is why crows and ravens are intelligence.
Looking at ELA student work

- If the trouble is with writing—action plan should target instruction around specific writing competencies
- If trouble is with meeting the standard—refer to an earlier close reading lesson/unit in which scaffolded instruction has occurred that targeted and assessed that standard
 - If the student struggled with the culminating assessment aligned to that standard, then the student may be struggling with the standard
 - If the student performed well on the assessment that measured the standard, it is likely that the student is struggling with comprehension of complex text
For students who might be struggling with comprehension of the complex text

Remember, reading involves…

- Phonemic awareness
- Phonics
- Fluency
- Vocabulary
- Comprehension
Features of a Complex Text

- Subtle and/or frequent transitions
- Multiple and/or subtle themes and purposes
- Density of information
- Unfamiliar settings, topics or events
- Lack of repetition, overlap of similarity in words and sentences
- Complex sentences
- Uncommon vocabulary
- Lack of words, sentences or paragraphs that review or pull things together for the student
- Longer paragraphs
- Any text structure which is less narrative and/or mixes structures
Comprehension of texts involves...

- Phonemic awareness
- Phonics
- Fluency
- Vocabulary
- Comprehension
What are the Features of a Complex Text?

- Subtle and/or frequent transitions
- Multiple and/or subtle themes and purposes
- Density of information
- Unfamiliar settings, topics or events
- Lack of repetition, overlap of similarity in words and sentences
- Complex sentences
- Uncommon vocabulary
- Lack of words, sentences or paragraphs that review or pull things together for the student
- Longer paragraphs
- Any text structure which is less narrative and/or mixes structures
Create Data Tracker

• **Educator Actions**
 - Create Data Tracker per item per student
 - Each item has a column to track standards, skills, and understandings

• **Enabling Conditions**
 - Spreadsheet software knowledge
 - List from pre-scoring item analysis
Create Data Tracker

- **Output**
 - Pre-loaded Data Tracker
 - 1 page of class data disaggregated by students
 - 1 page of class data disaggregated by skills and understandings
 - 1 page per student, items disaggregated by standards and skills/understandings
Example Data Report: Math

<table>
<thead>
<tr>
<th>Standard description</th>
<th>8NS1</th>
<th>8NS2</th>
<th>8EE1</th>
<th>8EE2</th>
<th>8EE3</th>
<th>8EE4</th>
<th>8EE5</th>
<th>8EE6</th>
<th>8EE7</th>
<th>8EE8</th>
<th>8F1</th>
<th>8F2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard code</td>
<td></td>
</tr>
<tr>
<td>Student 1</td>
<td></td>
</tr>
<tr>
<td>Student 2</td>
<td></td>
</tr>
<tr>
<td>Student 3</td>
<td></td>
</tr>
<tr>
<td>Student 4</td>
<td></td>
</tr>
<tr>
<td>Student 5</td>
<td></td>
</tr>
<tr>
<td>Student 6</td>
<td></td>
</tr>
<tr>
<td>Student 7</td>
<td></td>
</tr>
</tbody>
</table>

EngageNY.org
<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td></td>
<td>8.EE.5</td>
<td>8.EE.5</td>
<td>8.EE.5</td>
<td>8.EE.5</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>P</td>
<td>P</td>
<td>C</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Standard: 8.EE.5

Understanding: Calculate slope, Create the graph of a line, Explain how to create a graph that represents a proportional relationship, Interpret slope as the unit rate in a real-world context.
<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Understanding "type"</td>
<td>C</td>
<td>S</td>
<td>W</td>
<td>W</td>
<td>W</td>
</tr>
<tr>
<td>Standard description</td>
<td>By the end of the year, read and comprehend literary nonfiction at the high end of the grades 6-8 text complexity band independently and proficiently.</td>
<td>Cite the textual evidence that most strongly supports an analysis of what the text says explicitly as well as inferences drawn from the text.</td>
<td>Demonstrate command of the conventions of standard English grammar and usage when writing.</td>
<td>Demonstrate command of the conventions of standard English capitalization, punctuation, and spelling when writing.</td>
<td></td>
</tr>
<tr>
<td>Student 1</td>
<td>Student 2</td>
<td>Student 3</td>
<td>Student 4</td>
<td>Student 5</td>
<td>Student 6</td>
</tr>
</tbody>
</table>
Example Data Report: ELA

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>Baseline info</td>
<td>Lexile/Ind. Reading</td>
<td>Reading level (other)</td>
<td>Phonemic awareness</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>By the end of the year, read and comprehend literary nonfiction at the high end of the grades 6–8 text complexity band independently and proficiently.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Student 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Student 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Student 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Student 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Student 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Item Analysis: Scoring Activity

• **Educator Actions**
 - Complete tracking chart per student as each item is scored

• **Enabling Conditions**
 - Access to:
 - item
 - student work
 - rubric
 - Data Tracker
Item Analysis: Scoring Activity

• Output
 o Completed Data Tracker
 o 1 page per student
 o 1 aggregated class page per standard
 o 1 aggregated class page per skill/understanding
Item Analysis: Student Work

• **Educator Actions**
 - Analyze standard page: which items are high priority for my class?
 - Analyze skills page: which items are high priority for my class?
 - Item analysis by student, starting with priorities: “why was response inadequate?”
Item Analysis: Student Work

• **Enabling Conditions**
 - Access to:
 - Data Tracker, Test, Rubric, student work
 - PLDs – confirmation of inferences

• **Output**
 - Completed list of priorities of skills and understandings to target for
 - Whole class
 - Small group
 - Individuals
Action Plan
Math Action Plan:

1. Consulting resources to understand the procedures, concepts, and common applications associated with the standard
 - Progressions documents
 - Illustrative Mathematics
 - Module problem sets and assessments
 - PLDs

2. Choosing targeted tasks
 - Choosing tasks from Illustrative Mathematics and module problem sets and assessments that highlight identified understandings
 - Modifying these tasks as necessary
 - Developing tasks based on these models
Math Action Plan:

3. Designing instructional activities for use with the targeted tasks
 - Who and When
 - How
 - **Procedural**: Reconnecting to concepts, Using visual models, Generalizing from repeated calculations (MP.8)
 - **Conceptual**: Explanations and justifications, Spoken and written activities, (MP.3, MP.6)
 - **Applications**: Interpreting, Modeling (MP.2, MP.4, MP.7)

4. Reassessing
 - Set a date
 - Leverage Illustrative Mathematics and module resources
 - Tasks remain integrated
2. Choosing a variable to represent the output leads to an equation in two variables describing the relation between two quantities. For example, choosing \(d \) to represent the distance traveled by the car traveling at 65 miles per hour yields the equation \(d = 65t \). Reading the expression on the right (multiplication of the variable by a constant) reveals the relationship (a rate relationship in which distance is proportional to time).

3. Tabulating values of the expression is the same as tabulating solution pairs of the corresponding equation.\(^*\) This gives insight into the nature of the relationship; for example, that the distance increases by the same amount for the same increase in the time (the ratio between the two being the speed).

4. Plotting points on the coordinate plane, in which each axis is marked with a scale representing one quantity, affords a visual representation of the relationship between two quantities.\(^*\)

Proportional relationships provide a fruitful first ground in which these notions can grow together. The constant of proportionality is visible in each; as the multiplicative factor in the expression, as the slope of the line, and as an increment in the table (if the dependent variable goes up by 1 unit in each entry).\(^*\) As students start to build a unified notion of the concept of function they are able to compare proportional relationships presented in different ways. For example, the table shows 300 miles in 5 hours, whereas the graph shows more than 300 miles in the same time.\(^8.EE.5\)

The connection between the unit rate in a proportional relationship and the slope of its graph depends on a connection with the geometry of similar triangles. The fact that a line has a well-defined slope—that the ratio between the rise and run for any two points on the line is always the same—depends on similar triangles.\(^8.EE.6\)

The fact that the slope is constant between any two points on a line leads to the derivation of an equation for the line. For a line through the origin, the right triangle whose hypotenuse is the line segment from \((0,0)\) to a point \((x,y)\) on the line is similar to the right triangle from \((0,0)\) to the point \((1,m)\) on the line, and so

\[
\begin{array}{c|c|c|c|c|c|c}
\text{Time } t \text{ (hours)} & 1 & 2 & 3 & 4 & 5 & 6 \\
60t \text{ (miles)} & 60 & 120 & 180 & 240 & 300 & 360 \\
\end{array}
\]

In the Grade 8 Functions domain, students see the relationship between the graph of a proportional relationship and its equation \(y = mx \) as a special case of the relationship between a line and its equation \(y = mx + b \), with \(b = 0 \).

8.EE.5 Graph proportional relationships, interpreting the unit rate as the slope of the graph. Compare two different proportional relationships represented in different ways.
Kell works at an after-school program at an elementary school. The table below shows how much money he earned every day last week.

<table>
<thead>
<tr>
<th></th>
<th>Monday</th>
<th>Wednesday</th>
<th>Friday</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time worked</td>
<td>1.5 hours</td>
<td>2.5 hours</td>
<td>4 hours</td>
</tr>
<tr>
<td>Money earned</td>
<td>$12.60</td>
<td>$21.00</td>
<td>$33.60</td>
</tr>
</tbody>
</table>

Mariko has a job mowing lawns that pays $7 per hour.

a. Who would make more money for working 10 hours? Explain or show work.

b. Draw a graph that represents y, the amount of money Kell would make for working x hours, assuming he made the same hourly rate he was making last week.

c. Using the same coordinate axes, draw a graph that represents y, the amount of money Mariko would make for working x hours.

d. How can you see who makes more per hour just by looking at the graphs? Explain.
Module Problem Sets and Assessments

1. The following table gives the number of people picking strawberries in a field and the corresponding number of hours that these people worked picking strawberries. Graph the table. Does the graph represent two quantities that are proportional to each other? Why or why not?

Although the points fall on a line, the line does not pass through the origin, so the graph does not represent two quantities that are proportional to each other.

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

2. Fill in the table and given values to create quantities proportional to each other and graph.

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
</tr>
</tbody>
</table>

3.

a. What are the differences between the graphs in Problem 1 and 2?

The graph in Problem 1 forms a line that slopes downward while the one in Problem 2 slopes upward.

b. What are similarities in the graphs in Problem 1 and 2?

Both graphs form straight lines and both graphs include the point (4,2).

c. What makes one graph represent quantities that are proportional to each other and one graph that does not represent quantities that are proportional to each other in Problems 1 and 2?
PLDs for Math

Grade 8 Mathematics Performance Level Descriptions

<table>
<thead>
<tr>
<th>Cluster</th>
<th>Performance Level 4</th>
<th>Performance Level 3</th>
<th>Performance Level 2</th>
<th>Performance Level 1*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Students understand the connections between proportional relationships, lines, and linear equations. (8.EE.5,6)</td>
<td>Write and graph an equation ((y = mx)) to represent a proportional relationship. Interpret the unit rate as the slope of the graph of a proportional relationship to solve real-world problems. Compare two different proportional relationships represented in different ways. Use similar triangles to show that the slope is the same between any two distinct points on a non-vertical line in the coordinate plane. Derive the equation ((y = mx)) and (y = mx + b).</td>
<td>Graph a proportional relationship given an equation, ((y = mx)). Interpret the unit rate as the slope of the graph of a proportional relationship. Compare two different proportional relationships represented in different ways. Use similar triangles to show that the slope is the same between any two distinct points on a non-vertical line in the coordinate plane.</td>
<td>Graph a proportional relationship given a table. Identify the unit rate as the slope of the graph of a proportional relationship.</td>
<td>Interpret ((y = mx)) as defining a relationship for a line with y-intercept of (b).</td>
</tr>
</tbody>
</table>
What do we do tomorrow?

Examples of next steps:

• Targeted fluency practice
• Targeted small group instruction with application-based problems
• Ongoing focus on conceptual teaching and learning
Looking at ELA student work

• The action plan involves
 o Targeted instruction around writing (organization, mechanics/grammar, etc.)
 o Looking to earlier formative assessments that measure the same standard to see if the issue may be the standard
 o Targeted intervention to address comprehension of complex texts, if necessary
PLDs for ELA

Grade 8 English Language Arts Performance Level Descriptions

<table>
<thead>
<tr>
<th>Anchor Standard</th>
<th>Performance Level 4</th>
<th>Performance Level 3</th>
<th>Performance Level 2</th>
<th>Performance Level 1*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Students read closely to determine what the text says explicitly and to make logical inferences from it; cite specific textual evidence when writing or speaking to support conclusions drawn from the text. (CCR R1)</td>
<td>Demonstrate an in-depth understanding by judiciously and accurately citing textual evidence that most strongly supports an analysis of what the text says explicitly as well as inferences drawn from the text.</td>
<td>Demonstrate a thorough understanding by citing textual evidence that most strongly supports an analysis of what the text says explicitly as well as inferences drawn from the text.</td>
<td>Demonstrate a basic understanding by citing with inconsistent accuracy some textual evidence that provides insufficient support for an attempt at an analysis of what the text says explicitly as well as inferences drawn from the text.</td>
<td></td>
</tr>
</tbody>
</table>

| Students determine central ideas or themes of a text and analyze their development; summarize the key supporting details and ideas. (CCR R2) | Demonstrate an in-depth understanding of a literary text by noting subtle connections between details in the text and a theme or central idea of the text and providing a detailed and nuanced analysis of its development over the course of the text, including its relationship to the characters, setting, and plot; provide a nuanced, detailed, and objective summary of the text. | Demonstrate a thorough understanding of a literary text by determining a theme or central idea of the text and analyzing its development over the course of the text, including its relationship to the characters, setting, and plot; provide an objective summary of the text. | Demonstrate a basic understanding of a literary text by determining the subject matter addressed in a story without analyzing its development over the course of the text, including its relationship to the characters, setting, and plot; provide a summary of the text that is insufficient in detail and/or scope and objectivity. | |

Demonstrate an in-depth understanding of an informational text by noting subtle connections between details in the text and a central idea of the text and by providing a detailed and nuanced analysis of its development over the course of the text, including its relationship to supporting ideas; provide a nuanced, detailed, and objective summary of the text. | Demonstrate a thorough understanding of an informational text by determining a central idea of the text and analyzing its development over the course of the text, including its relationship to supporting ideas; provide an objective summary of the text. | Demonstrate a basic understanding of an informational text by determining the subject matter addressed in a text without formulating a central idea or analyzing the development of that idea over the course of the text; provide a summary of the text that is insufficient in detail and/or scope and objectivity. | |
What do we do tomorrow?

Examples of next steps:

- Targeted small-group instruction in mechanics/grammar
- Look to the modules for examples of citing evidence from text(s) to support inferences
- Intervention to address specific issues with comprehension (e.g., decoding, phonemic awareness.)
Action Plan

• **Educator Actions**
 - Review PLDs – analyze across levels at specific standards/clusters; what is necessary to move students to the next level?
 - Create a concrete action plan: what will be used, when you will do it, how you will reassess
 - Determine what educator supports are needed
 - Share plans and needs with instructional leader
Action Plan

• Enabling Conditions
 o Action planning chart that requires
 o Whole class action plan
 o Small groups action plans
 o Individual students action plans
 o Common Core aligned practices from which to pull

EngageNY.org
Action Plan

• Output
 o Concrete action plan:
 o what will be done for whole class, small groups, and individuals
 o what will be used
 o when it will happen
 o plan for reassessment of these standards, skills, and understandings
Leveraging Module Assessment Tasks
1. The water level in Ricky Lake changes at an average of $\frac{7}{10}$ inch every 3 years.

a. Based on the rate above, how much will the water level change after one year? Show your calculations and model your answer on the vertical number line, using 0 as the original water level.

 [Vertical number line diagram]

b. How much would the water level change over a 7-year period?

c. When written in decimal form, is your answer to part (b) a repeating decimal or a terminating decimal? Justify your answer using long division.
Mid-unit 1 Assessment

Analyzing Excerpts of Lyndon Johnson’s Speech “The Great Society”

This reading assessment centers on standards NYSP12ELA CCLS RI.8.2, RI.8.5, and RI.8.6. Students will read the excerpts from the speech “The Great Society” by Lyndon B. Johnson, determine the central idea, and analyze its development through the speech. Specifically, they first will complete a graphic organizer in which they analyze the speech’s structure by completing information about parts of the speech. Students will identify the main supporting idea of each part, cite evidence from the text that supports their answer, and explain how the textual evidence helped them decide on the supporting idea. After completing the graphic organizer, students then will state the central idea and explain how the parts of the speech developed this theme. They will conclude the assessment by answering several short questions related to perspective, including students’ understanding of how Johnson acknowledges opposing viewpoints, and their ability to explain what role Johnson’s series of questions that begin “Will you join in the battle …” play in developing and refining the central idea.

End of unit 1 Assessment

Analyzing Author’s Craft in To Kill a Mockingbird and the Poem “Solitude”: Allusions, Text Structure, Connections to Traditional Themes, and Use of Figurative Language

This reading assessment centers on standards NYSP12 ELA CCLS RL.8.4, RL.8.5, RL.8.9, and L.8.5a. In order to demonstrate their understanding of different text structures and how these structures contribute to the meaning of the texts, students will analyze the meaning and structure of Chapter 11 and contrast it to the poem “Solitude” by Emma Wheeler Wilcox. Specifically, students will read “Solitude” and two passages from Chapter 11 and then complete a graphic organizer in which they analyze the meaning and structure of each text and identify how these two texts connect to the traditional theme of the Golden Rule (RL.8.5 and RL.8.9). They will also answer selected-response and short-answer questions regarding the allusion to Ivanhoe in Chapter 11 and how this allusion enhances the understanding of the text.
Grade 2 ELA Assessments

DA-4

Name ________________________________

1. Why was the War of 1812 called the second war for independence?

__

__

__

2. How is “The Star-Spangled Banner” connected to the War of 1812?

__

__

__

3. What was impressment?

__

__

__
Grade 9 ELA Assessments

<table>
<thead>
<tr>
<th>Lesson</th>
<th>Standards Assessed</th>
<th>Text Covered</th>
<th>Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A</td>
<td>Anchor Standard 6</td>
<td>Master read plus paragraph 1</td>
<td>What is the narrator's purpose in the 1st paragraph?</td>
</tr>
<tr>
<td>1B</td>
<td>RL 2</td>
<td>P 1-2</td>
<td>What central ideas emerge in paragraphs 1 and 2?</td>
</tr>
<tr>
<td>2</td>
<td>RL 5</td>
<td>P 3</td>
<td>How does Poe manipulate (use) time in this paragraph and what is the effect?</td>
</tr>
<tr>
<td>3</td>
<td>Anchor Standard 6</td>
<td>P 4-7</td>
<td>How does the narrator's point of view contain to develop a central idea.</td>
</tr>
<tr>
<td>4</td>
<td>RL 2-5</td>
<td>P 8-13</td>
<td>How do Poe's structural choices contribute to the development and refinement of a central idea?</td>
</tr>
</tbody>
</table>
Protocol

- How do we begin this process?
- How will this be different from “usual” DDI?
Analysis Meeting Protocol

Pre-meeting

Prepare for the 30 Minute Data Meeting

1. Take assessment.
2. Record the skills and understandings required by task (cognitive labs)

Leader Actions

1. Prepare for 30 min data meeting:
2. Review each teacher’s assessment in standards, skills, and understandings
3. Gather materials:
 a. Each teacher’s data tracker template
 b. Copies of assessment
 c. Copies of standards
 d. Copies of PLDs
 e. Copies of action planning template
4. Send memo to teachers of date, time, and to bring
 a. Data tracker template
 b. Assessment/record of skills and understandings
 c. Student work
 d. Action planning template

30 Minute Data Meeting

Participants:
- Group of 4-5 teachers, all having given the same assessment
- Instructional Leader

Materials needed:
copies of each teacher’s data tracker templates, copies of assessment, copies of standards, copies of PLDs, copies of action planning template, chart paper, chart markers

<table>
<thead>
<tr>
<th>Time</th>
<th>Steps in Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 minute</td>
<td>Teachers form a group. Use the following roles: presenter (will be given a prepared presentation to share) facilitator, timekeeper, recorder, debriefer.</td>
</tr>
</tbody>
</table>
| 20 minutes: Task Analysis set-up | **Materials:** Data Tracker, standards, chart paper, chart markers
 - Leader: “We are going to determine the demands of each task and build a data tracker.”
 - **Highlight task components:** e.g., conceptual questions, passages, writing demands, etc.
 - **Highlight and score** five highest priority skills and understandings required by the task(s) (5 points for top priority down to 1 point for 5th priority.)
 - **Cross-reference items:** which items fall into each standard? Record.
 - **Cross-reference items:** which items fall into each skill/understanding, including integrated skills/understandings? Record.
 - Recorder (on chart paper): indicate participants’ results: |
| 5 minutes: Debrief | **Come to consensus on task analysis and prioritization** |
| 4 minutes |
 - Next steps (homework)
 - Complete Data tracker for each class
 - For high priority understandings: develop draft instructional plans |

Outcome

1. Shared understanding of task demand and priority skills and understandings
What adaptations on your data driven instruction protocols do you need to make to incorporate what we’ve discussed?