# 2-Point Holistic Rubric

| **2 Point** | A two-point response includes the correct solution to the question and demonstrates a thorough understanding of the mathematical concepts and/or procedures in the task.  
This response  
• indicates that the student has completed the task correctly, using mathematically sound procedures  
• contains sufficient work to demonstrate a thorough understanding of the mathematical concepts and/or procedures  
• may contain inconsequential errors that do not detract from the correct solution and the demonstration of a thorough understanding |
|---|---|
| **1 Point** | A one-point response demonstrates only a partial understanding of the mathematical concepts and/or procedures in the task.  
This response  
• correctly addresses only some elements of the task  
• may contain an incorrect solution but applies a mathematically appropriate process  
• may contain the correct solution but required work is incomplete |
| **0 Point*** | A zero-point response is incorrect, irrelevant, incoherent, or contains a correct solution obtained using an obviously incorrect procedure. Although some elements may contain correct mathematical procedures, holistically they are not sufficient to demonstrate even a limited understanding of the mathematical concepts embodied in the task. |

*Condition Code A is applied whenever a student who is present for a test session leaves an entire constructed-response question in that session completely blank (no response attempted).*
### 3-Point Holistic Rubric

| 3 Point | A three-point response includes the correct solution(s) to the question and demonstrates a thorough understanding of the mathematical concepts and/or procedures in the task. This response  
|  | • indicates that the student has completed the task correctly, using mathematically sound procedures  
|  | • contains sufficient work to demonstrate a thorough understanding of the mathematical concepts and/or procedures  
|  | • may contain inconsequential errors that do not detract from the correct solution(s) and the demonstration of a thorough understanding |

| 2 Point | A two-point response demonstrates a partial understanding of the mathematical concepts and/or procedures in the task. This response  
|  | • appropriately addresses most but not all aspects of the task using mathematically sound procedures  
|  | • may contain an incorrect solution but provides sound procedures, reasoning, and/or explanations  
|  | • may reflect some minor misunderstanding of the underlying mathematical concepts and/or procedures |

| 1 Point | A one-point response demonstrates only a limited understanding of the mathematical concepts and/or procedures in the task. This response  
|  | • may address some elements of the task correctly but reaches an inadequate solution and/or provides reasoning that is faulty or incomplete  
|  | • exhibits multiple flaws related to misunderstanding of important aspects of the task, misuse of mathematical procedures, or faulty mathematical reasoning  
|  | • reflects a lack of essential understanding of the underlying mathematical concepts  
|  | • may contain the correct solution(s) but required work is limited |

| 0 Point* | A zero-point response is incorrect, irrelevant, incoherent, or contains a correct solution obtained using an obviously incorrect procedure. Although some elements may contain correct mathematical procedures, holistically they are not sufficient to demonstrate even a limited understanding of the mathematical concepts embodied in the task. |

* Condition Code A is applied whenever a student who is present for a test session leaves an entire constructed-response question in that session completely blank (no response attempted).
2019 2- and 3-Point Mathematics Scoring Policies

Below are the policies to be followed while scoring the mathematics tests for all grades:

1. If a student shows the work in other than a designated “Show your work” or “Explain” area, that work should still be scored.

2. If the question requires students to show their work, and the student shows appropriate work and clearly identifies a correct answer but fails to write that answer in the answer space, the student should still receive full credit.

3. If students are directed to show work or provide an explanation, a correct answer with **no** work shown or **no** explanation provided, receives **no** credit.

4. If students are **not** directed to show work, any work shown will **not** be scored. This applies to items that do **not** ask for any work and items that ask for work for one part and do **not** ask for work in another part.

5. If the student provides one legible response (and one response only), the rater should score the response, even if it has been crossed out.

6. If the student has written more than one response but has crossed some out, the rater should score only the response that has **not** been crossed out.

7. If the student provides more than one response, but does not indicate which response is to be considered the correct response and none has been crossed out, the student shall not receive full credit.

8. If the student makes a conceptual error (that is an error in understanding rather than an arithmetic or computational error), that student shall not receive more than 50% credit.

9. Trial-and-error responses are **not** subject to Scoring Policy #6 above, since crossing out is part of the trial-and-error process.

10. If a response shows repeated occurrences of the same conceptual error within a question, the conceptual error should **not** be considered more than once in gauging the demonstrated level of understanding.

11. In questions requiring number sentences, the number sentences must be written horizontally.

12. When measuring angles with a protractor, there is a +/- 5 degrees deviation allowed of the true measure.

13. Condition Code A is applied whenever a student who is present for a test session leaves an entire constructed-response question in that session completely blank (no response attempted). This is not to be confused with a score of zero wherein the student does respond to part or all of the question but that work results in a score of zero.
The shaded part of the model below represents the fraction of a candy bar that Jill ate.

[Diagram of a candy bar with shaded parts]

Tom has the same size candy bar. He eats 2 times the amount that Jill ate. What fraction of the candy bar does Tom eat?

*Show your work.*

*Answer* _______________ of the candy bar
The shaded part of the model below represents the fraction of a candy bar that Jill ate.

Tom has the same size candy bar. He eats 2 times the amount that Jill ate. What fraction of the candy bar does Tom eat?

*Show your work.*

\[
\frac{3}{8} \times 2 = \frac{6}{8}
\]

*or*

\[
\frac{3}{8} + \frac{3}{8} = \frac{6}{8}
\]

*or other valid process*

Answer \( \frac{6}{8} \) or \( \frac{3}{4} \) of the candy bar
Score Point 2 (out of 2 points)

This response demonstrates a thorough understanding of the concepts in the task. The fraction of the candy bar that Tom eats is calculated correctly using both multiplication and addition. The response is complete and correct.
The shaded part of the model below represents the fraction of a candy bar that Jill ate.

Tom has the same size candy bar. He eats 2 times the amount that Jill ate. What fraction of the candy bar does Tom eat?

Show your work.

\[
\frac{3}{8} \times 2 = \frac{6}{8}
\]

Score Point 2 (out of 2 points)

This response demonstrates a thorough understanding of the concepts in the task. The fraction of the candy bar that Tom eats is calculated correctly using multiplication. Although the fraction does not need to be reduced, it is simplified correctly.
GUIDE PAPER 3

The shaded part of the model below represents the fraction of a candy bar that Jill ate.

Tom has the same size candy bar. He eats 2 times the amount that Jill ate. What fraction of the candy bar does Tom eat?

*Show your work.*

\[
\frac{3}{8} + \frac{3}{8} = \frac{6}{8}
\]

*Answer*

\[
\frac{6}{8}
\]

of the candy bar

**Score Point 2 (out of 2 points)**

This response demonstrates a thorough understanding of the mathematical concepts in the task. The fraction of the candy bar that Tom eats is calculated correctly using addition. The response is complete and correct.
Score Point 1 (out of 2 points)

This response demonstrates only a partial understanding of the concepts in the task. The number of pieces that Tom eats is correct. The process is shown correctly in the artwork to be multiplied by 2, but in the fraction multiplication the denominator as well as the numerator are multiplied by 2. This response correctly addresses only some elements of the task.
The shaded part of the model below represents the fraction of a candy bar that Jill ate.

Tom has the same size candy bar. He eats 2 times the amount that Jill ate. What fraction of the candy bar does Tom eat?

*Show your work.*

\[
\frac{3}{8} \times 2 = \frac{7}{8}
\]

*Answer*

Tom ate \(\frac{7}{8}\) of the candy bar

**Score Point 1 (out of 2 points)**

This response demonstrates only a partial understanding of the mathematical concepts in the task. An appropriate multiplication is performed, but the product is incorrect due to a calculation error. This response contains an incorrect solution but applies an appropriate process.
Score Point 1 (out of 2 points)

This response demonstrates only a partial understanding of the mathematical concepts in the task. The multiplication $3 \times 2 = 6$ correctly determines an appropriate numerator, but the denominator is incorrect in the work and missing from the answer space. This response correctly addresses only some elements of the task.
The shaded part of the model below represents the fraction of a candy bar that Jill ate.

Tom has the same size candy bar. He eats 2 times the amount that Jill ate. What fraction of the candy bar does Tom eat?

Show your work.

Answer \( \frac{3}{4} \) of the candy bar

Score Point 0 (out of 2 points)

This response is not sufficient to demonstrate even a limited understanding of the concepts in the task. Per Scoring Policy #3, a correct answer with no work shown receives no credit.
The shaded part of the model below represents the fraction of a candy bar that Jill ate.

Tom has the same size candy bar. He eats 2 times the amount that Jill ate. What fraction of the candy bar does Tom eat?

*Show your work.*

\[
\frac{3}{8} + 2 = \frac{3}{8}
\]

*Answer* of the candy bar

**Score Point 0 (out of 2 points)**

This response is not sufficient to demonstrate even a limited understanding of the mathematical concepts in the task. An incorrect solution is obtained by an incorrect procedure.
Use each digit shown below to create a 5-digit number with the greatest value and a 5-digit number with the least value. Each digit can only be used once in each number. Then write a number sentence using $>$, $<$, or $=$ to compare the two numbers you created.

2, 9, 1, 3, 8

*Show your work.*
Use each digit shown below to create a 5-digit number with the greatest value and a 5-digit number with the least value. Each digit can only be used once in each number. Then write a number sentence using $>$, $<$, or $=$ to compare the two numbers you created.

2, 9, 1, 3, 8

Show your work.

The greatest number that can be created is 98,321 and the smallest number is 12,389.

98,321 $>$ 12,389

or

12,389 $<$ 98,321
Use each digit shown below to create a 5-digit number with the greatest value and a 5-digit number with the least value. Each digit can only be used once in each number. Then write a number sentence using $>$, $<$, or $=$ to compare the two numbers you created.

2, 9, 1, 3, 8

*Show your work.*

- greatest #: $98,321$
- least #: $12,389$
- $98,321$ is greater than $12,389$.  
- $98,321 > 12,389$

**Score Point 2 (out of 2 points)**

This response demonstrates a thorough understanding of the concepts in the task. Two correct, 5-digit numbers are created and compared. The dash sign in front of both numbers is taken as a dash, and not a negative sign. The response is complete and correct.
Score Point 2 (out of 2 points)

This response demonstrates a thorough understanding of the concepts in the task. Two correct comparisons are provided with the acceptable 5-digit numbers. The response is complete and correct.
GUIDE PAPER 3

Use each digit shown below to create a 5-digit number with the greatest value and a 5-digit number with the least value. Each digit can only be used once in each number. Then write a number sentence using >, <, or = to compare the two numbers you created.

2, 9, 1, 3, 8

*Show your work.*

\[
98,321 > 12,389
\]

I know this because 9 is greater than 1 and 8 is greater than 2 and so on.

---

Score Point 2 (out of 2 points)

This response demonstrates a thorough understanding of the concepts in the task. Two correct, 5-digit numbers are created and compared. The explanation describes the comparison digit by digit. The response is complete and correct.
GUIDE PAPER 4

Score Point 1 (out of 2 points)

This response demonstrates only a partial understanding of the mathematical concepts in the task. The two written 5-digit numbers are correctly compared; however, the created numbers are not those with the greatest and least values. This response correctly addresses only some elements of the task.
GUIDE PAPER 5

Use each digit shown below to create a 5-digit number with the greatest value and a 5-digit number with the least value. Each digit can only be used once in each number. Then write a number sentence using >, <, or = to compare the two numbers you created.

2, 9, 1, 3, 8

Show your work.

GREATEST number - 98,321
LEAST GREATEST number - 12,389

98,321 < 12,389

Score Point 1 (out of 2 points)

This response demonstrates only a partial understanding of the mathematical concepts in the task. Two correct numbers with the greatest and least values are created; however, they are incorrectly compared. This response correctly addresses only some elements of the task.
GUIDE PAPER 6

Use each digit shown below to create a 5-digit number with the greatest value and a 5-digit number with the least value. Each digit can only be used once in each number. Then write a number sentence using $>$, $<$, or $=$ to compare the two numbers you created.

2, 9, 1, 3, 8

*Show your work.*

\[
98321 \ > \ 98312
\]

Score Point 1 (out of 2 points)

This response demonstrates only a partial understanding of the mathematical concepts in the task. The two written numbers are correctly compared. The number with the greatest value is correctly identified. The number with the least value is incorrect. This response correctly addresses only some elements of the task.
GUIDE PAPER 7

Use each digit shown below to create a 5-digit number with the greatest value and a 5-digit number with the least value. Each digit can only be used once in each number. Then write a number sentence using $>$, $<$, or $=$ to compare the two numbers you created.

$2, 9, 1, 3, 8$

*Show your work.*

29 $>$ 13

**Score Point 0 (out of 2 points)**

This response is not sufficient to demonstrate even a limited understanding of the mathematical concepts in the task. Although the two numbers are correctly compared, neither number has the required 5 digits.
Use each digit shown below to create a 5-digit number with the greatest value and a 5-digit number with the least value. Each digit can only be used once in each number. Then write a number sentence using >, <, or = to compare the two numbers you created.

2, 9, 1, 3, 8

Show your work.

2 < 9 > 1 < 3 < 8

Score Point 0 (out of 2 points)

This response is not sufficient to demonstrate even a limited understanding of the mathematical concepts in the task. Only numbers with single digits, not 5 digits, are compared.
The diagram below shows line AB, line CD, and line EF.

Identify two lines on the diagram that appear to be perpendicular to each other.

*Explain how you determined your answer.*
The diagram below shows line AB, line CD, and line EF.

Identify two lines on the diagram that appear to be perpendicular to each other.

*Explain how you determined your answer.*

Line AB is perpendicular to line EF because they intersect at a 90° or right angle.

*or*

Line CD is perpendicular to line EF because they intersect at a 90° or right angle.

*or other valid explanation*
The diagram below shows line AB, line CD, and line EF.

Identify two lines on the diagram that appear to be perpendicular to each other.

*Explain how you determined your answer.*

AB and EF because they make a 90 degrees

Score Point 2 (out of 2 points)

This response demonstrates a thorough understanding of the mathematical concepts in the task. Two correct perpendicular lines are identified and a correct explanation is provided. AB and EF are not labeled as lines, but this is inconsequential as it is understood they are lines. The response is complete and correct.
Score Point 2 (out of 2 points)

This response demonstrates a thorough understanding of the mathematical concepts in the task. Two correct perpendicular lines are identified and a correct explanation is provided. The response is complete and correct.

CD and EF are perpendicular to each other because perpendicular lines have a right angle that is 90 degrees and CD and EF show this.
Score Point 2 (out of 2 points)

This response demonstrates a thorough understanding of the mathematical concepts in the task. Two correct perpendicular lines are identified and a correct explanation is provided. The response is complete and correct.
Identify two lines on the diagram that appear to be perpendicular to each other.

AB are perpendicular because they form right angles and measure 90°.
The diagram below shows line AB, line CD, and line EF.

Identify two lines on the diagram that appear to be perpendicular to each other.

*Explain how you determined your answer.*

I determined my answer by saying EF line went straight down the middle because perpendicular lines have up and down lines and AB they both have across lines.

Score Point 1 (out of 2 points)

This response demonstrates only a partial understanding of the mathematical concepts in the task. The perpendicular lines AB and EF are correctly identified, but the explanation is incomplete: the angle measure is not addressed. This response correctly addresses only some elements of the task.
GUIDE PAPER 6

The diagram below shows line AB, line CD, and line EF.

Identify two lines on the diagram that appear to be perpendicular to each other.

**Explain how you determined your answer.**

Lines $\overrightarrow{AB}$ and $\overrightarrow{EF}$, because perpendicular lines are lines that form a cross or plus sign, and these lines form a cross and a plus sign.

Score Point 1 (out of 2 points)

This response demonstrates only a partial understanding of the mathematical concepts in the task. The perpendicular lines AB and EF are correctly identified, but the explanation of the lines forming “a cross and a plus sign” is not sufficient to mean right angles. This response correctly addresses only some elements of the task.
The diagram below shows line AB, line CD, and line EF.

Identify two lines on the diagram that appear to be perpendicular to each other.

*Explain how you determined your answer.*

Score Point 0 (out of 2 points)

This response is not sufficient to demonstrate even a limited understanding of the mathematical concepts in the task. Two perpendicular lines are not identified and the explanation is insufficient to show understanding.
Score Point 0 (out of 2 points)

This response is not sufficient to demonstrate even a limited understanding of the mathematical concepts in the task. Two points instead of two perpendicular lines are identified and the explanation “because they are across each other” is not sufficient.
Mick and Jackie buy a large sandwich to share. They each eat $\frac{2}{5}$ of the sandwich.

How much of the sandwich is remaining?

*Show your work.*

*Answer* __________ of the sandwich
Mick and Jackie buy a large sandwich to share. They each eat $\frac{2}{5}$ of the sandwich.

How much of the sandwich is remaining?

*Show your work.*

\[
\frac{2}{5} \times 2 = \frac{4}{5}
\]

\[
\frac{5}{5} - \frac{4}{5} = \frac{1}{5}
\]

*or*

\[
\frac{5}{5} - \frac{2}{5} = \frac{3}{5}
\]

\[
\frac{3}{5} - \frac{2}{5} = \frac{1}{5}
\]

*or other valid process*

*Answer* $\frac{1}{5}$ of the sandwich
Mick and Jackie buy a large sandwich to share. They each eat $\frac{2}{5}$ of the sandwich. How much of the sandwich is remaining?

Show your work.

\[
\frac{2}{5} + \frac{2}{5} = \frac{4}{5}
\]

Answer $\frac{1}{5}$ of the sandwich

Score Point 2 (out of 2 points)

This response demonstrates a thorough understanding of the mathematical concepts in the task. The fraction of the sandwich that Mick and Jackie ate is calculated correctly using addition. The remaining portion of the sandwich is shown as a model. The response is complete and correct.
Mick and Jackie buy a large sandwich to share. They each eat $\frac{2}{5}$ of the sandwich. How much of the sandwich is remaining?

Show your work.

\[
\frac{2}{1} \times \frac{2}{5} = \frac{4}{5}
\]

\[
\frac{5}{4} - \frac{4}{5} = \frac{1}{5}
\]

Answer: $\frac{1}{5}$ of the sandwich

**Score Point 2 (out of 2 points)**

This response demonstrates a thorough understanding of the mathematical concepts in the task. The fraction of the sandwich that Mick and Jackie ate is calculated correctly using multiplication. This response demonstrates correctly that the whole sandwich is equivalent to $\frac{5}{4}$ and the portion eaten is correctly subtracted to determine the solution.
Mick and Jackie buy a large sandwich to share. They each eat \( \frac{2}{5} \) of the sandwich. How much of the sandwich is remaining?

*Show your work.*

\[
\frac{5}{5} - \frac{2}{5} - \frac{2}{5} = \frac{1}{5}
\]

*Answer* \( \frac{1}{5} \) of the sandwich

**Score Point 2 (out of 2 points)**

This response demonstrates a thorough understanding of the mathematical concepts in the task. The fraction of the sandwich remaining is correctly calculated using repeated subtraction from the whole.
Mick and Jackie buy a large sandwich to share. They each eat \( \frac{2}{5} \) of the sandwich.

How much of the sandwich is remaining?

**Show your work.**

\[
\frac{2}{5} - \frac{5}{5} = \frac{3}{5} \quad \frac{3}{5} - \frac{2}{5} = \frac{1}{5}
\]

**Answer:**

There is \( \frac{1}{5} \) left of the sandwich.

**Score Point 1 (out of 2 points)**

This response demonstrates only a partial understanding of the mathematical concepts in the task. The fraction of the remaining sandwich is correctly calculated; however, the first subtraction is written in an incorrect order. This response correctly addresses only some elements of the task.
Mick and Jackie buy a large sandwich to share. They each eat \( \frac{2}{5} \) of the sandwich. How much of the sandwich is remaining?

Show your work.

\[
\frac{2}{5} + \frac{2}{5} = \frac{4}{5}
\]

Answer \( \frac{4}{5} \) of the sandwich

Score Point 1 (out of 2 points)

This response demonstrates only a partial understanding of the mathematical concepts in the task. The portion of the sandwich that Mick and Jackie ate is correctly calculated but the result is inappropriately provided as the solution. This response correctly addresses only some elements of the task.
Mick and Jackie buy a large sandwich to share. They each eat $\frac{2}{5}$ of the sandwich.

How much of the sandwich is remaining?

*Show your work.*

\[
\frac{5}{5} - \frac{2}{5} = \frac{3}{5}
\]

Answer: $\frac{3}{5}$ of the sandwich

**Score Point 1 (out of 2 points)**

This response demonstrates only a partial understanding of the mathematical concepts in the task. The correct process is applied to determine the remaining amount of the sandwich; however, the work accounts for only one person eating the sandwich instead of two. This response correctly addresses only some elements of the task.
Mick and Jackie buy a large sandwich to share. They each eat \( \frac{2}{5} \) of the sandwich. How much of the sandwich is remaining?

Show your work.

\[
\frac{2}{5} - \frac{2}{5} = \frac{0}{5}
\]

**Score Point 0 (out of 2 points)**

This response is not sufficient to demonstrate even a limited understanding of the mathematical concepts in the task. Although the subtraction of the fractions is correct, it is irrelevant to the task.
Mick and Jackie buy a large sandwich to share. They each eat \( \frac{2}{5} \) of the sandwich. How much of the sandwich is remaining?

Show your work.

\[
\frac{2}{5} + \frac{3}{5} = \frac{5}{5}
\]

Answer \( \frac{5}{5} \) of the sandwich

Score Point 0 (out of 2 points)

This response is not sufficient to demonstrate even a limited understanding of the mathematical concepts in the task. Although the addition of the fractions is carried out correctly, to supply \( \frac{5}{5} \) as the answer demonstrates a lack of understanding; holistically this is not sufficient to demonstrate even a limited understanding of the mathematical concepts embodied in the task. An incorrect solution is obtained by an incorrect procedure.
How does the value of the digit 3 in the number 63,297 compare to the value of the digit 3 in the number 60,325? Be sure to include what you know about place value in your answer.

*Explain your answer.*
How does the value of the digit 3 in the number 63,297 compare to the value of the digit 3 in the number 60,325? Be sure to include what you know about place value in your answer.

*Explain your answer.*

The digit 3 in the number 63,297 is in the thousands place, and the digit 3 in the number 60,325 is in the hundreds place and $3,000 > 300$.

*or*

The value of the digit 3 in the number 63,297 is 10 times greater than the value of the digit 3 in 60,325 because a number in the thousands place is 10 times greater than that same number in the hundreds place.

*or other valid explanation*
How does the value of the digit 3 in the number 63,297 compare to the value of the digit 3 in the number 60,325? Be sure to include what you know about place value in your answer.

Explain your answer.

The value of 3 in 63,297 is 10 times the value of 3 in the number 60,325.

\[ \times 10 \]
\[ 60,325 \]
\[ 63,297 \]

Score Point 2 (out of 2 points)

This response demonstrates a thorough understanding of the mathematical concepts in the task. A correct explanation is provided with a good comparison using place value. The work below the lines of “×10” emphasizes this understanding. The response is complete and correct.
How does the value of the digit 3 in the number 63.297 compare to the value of the digit 3 in the number 60,325? Be sure to include what you know about place value in your answer.

**Explain your answer.**

I know the value of the 3 in 63.297 is greater than the value of the 3 in 60,325 because the 3 in 63.297 is in the thousands but the 3 in 60,325 is in the hundreds and 3,000 > 300.

---

**Score Point 2 (out of 2 points)**

This response demonstrates a thorough understanding of the mathematical concepts in the task. A correct explanation is provided with a good comparison using place value. The response is complete and correct.
How does the value of the digit 3 in the number 63,297 compare to the value of the digit 3 in the number 60,325? Be sure to include what you know about place value in your answer.

*Explain your answer.*

The value of the digit 3 in 63,297 is compare to the value of the digit in the number 60,325 because 3,000 is 10 times as much as 300

Score Point 2 (out of 2 points)

This response demonstrates a thorough understanding of the mathematical concepts in the task. A correct explanation is provided with a good comparison using place value. The response is complete and correct.
How does the value of the digit 3 in the number 63,297 compare to the value of the digit 3 in the number 60,325? Be sure to include what you know about place value in your answer.

*Explain your answer.*

3,000 > 300

---

**Score Point 1 (out of 2 points)**

This response demonstrates only a partial understanding of the mathematical concepts in the task. The comparison is correct, but the response is insufficient to explain the value of the digit 3 in the two given numbers. This response correctly addresses only some elements of the task.
How does the value of the digit 3 in the number 63,297 compare to the value of the digit 3 in the number 60,325? Be sure to include what you know about place value in your answer.

Explain your answer.

3,000 is a greater number than 300 and if you minus the numbers you get 2,700, and if you add both numbers you get 3,300.

Score Point 1 (out of 2 points)

This response demonstrates only a partial understanding of the mathematical concepts in the task. The comparison is correct, but the response is insufficient to explain the value of the digit 3 in the two given numbers. This response correctly addresses only some elements of the task.
How does the value of the digit 3 in the number 63,297 compare to the value of the digit 3 in the number 60,325? Be sure to include what you know about place value in your answer.

*Explain your answer.*

the 3 in 63,297 > than the 3 in the 60,325 because it’s in the thousands

---

**Score Point 1 (out of 2 points)**

This response demonstrates only a partial understanding of the mathematical concepts in the task. The comparison is correct, but the place value of the digit 3 in 60,325 is not mentioned. This response correctly addresses only some elements of the task.
How does the value of the digit 3 in the number 63,297 compare to the value of the digit 3 in the number 60,325? Be sure to include what you know about place value in your answer.

I know that place value has the amount like ones, tens, hundreds or even more. Example: 63,297 is greater than 60,325.

<table>
<thead>
<tr>
<th>Ones</th>
<th>Tens</th>
<th>Hundreds</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

63,297 > 60,325

example for a graph

Score Point 0 (out of 2 points)

This response is not sufficient to demonstrate even a limited understanding of the mathematical concepts in the task. The numbers themselves are compared rather than the values of the digit 3 in the given numbers. The explanation only defines generic place value and does not show how place value is related to the given numbers.
How does the value of the digit 3 in the number 63,297 compare to the value of the digit 3 in the number 60,325? Be sure to include what you know about place value in your answer.

**Explain your answer.**

10

---

**Score Point 0 (out of 2 points)**

This response is not sufficient to demonstrate even a limited understanding of the mathematical concepts in the task. Although the number 10 is the relative factor between the values of the digit 3 in both numbers, it is not clear this is the intent of the response. Per Scoring Policy #3, if no explanation is provided to support the answer, the student receives no credit.
Ms. Peterson wants to replace all the floor tiles in her kitchen. The kitchen floor is 12 feet long and 7 feet wide. If Ms. Peterson already has 45 one-foot square tiles, how many more one-foot square tiles does she need to completely cover the kitchen floor?

*Show your work.*

*Answer* _____________ more tiles
Ms. Peterson wants to replace all the floor tiles in her kitchen. The kitchen floor is 12 feet long and 7 feet wide. If Ms. Peterson already has 45 one-foot square tiles, how many more one-foot square tiles does she need to completely cover the kitchen floor?

*Show your work.*

\[ 12 \times 7 = 84 \text{ square feet} \]

\[ 84 - 45 = 39 \text{ more tiles} \]

*or other valid process*
Ms. Peterson wants to replace all the floor tiles in her kitchen. The kitchen floor is 12 feet long and 7 feet wide. If Ms. Peterson already has 45 one-foot square tiles, how many more one-foot square tiles does she need to completely cover the kitchen floor?

Show your work.

Answer: 39 more tiles

Score Point 2 (out of 2 points)

This response demonstrates a thorough understanding of the mathematical concepts in the task. The total area of the floor and the number of additional tiles are calculated correctly. The response is complete and correct.
Ms. Peterson wants to replace all the floor tiles in her kitchen. The kitchen floor is 12 feet long and 7 feet wide. If Ms. Peterson already has 45 one-foot square tiles, how many more one-foot square tiles does she need to completely cover the kitchen floor?

Show your work.

\[
\begin{array}{c}
\frac{12}{7} \\
\frac{7}{19} \\
\frac{19}{89}
\end{array}
\]

\[
\begin{array}{c}
784 \\
-45 \\
39 \text{ more one-foot square tiles}
\end{array}
\]

Answer \(39\) more tiles

Score Point 2 (out of 2 points)

This response demonstrates a thorough understanding of the mathematical concepts in the task. The total area of the floor and the number of additional tiles are calculated correctly. The response is complete and correct.
Ms. Peterson wants to replace all the floor tiles in her kitchen. The kitchen floor is 12 feet long and 7 feet wide. If Ms. Peterson already has 45 one-foot square tiles, how many more one-foot square tiles does she need to completely cover the kitchen floor?

Show your work.

\[
7 \times 12 = 84
\]

\[
\begin{array}{c}
84 \\
45 \\
39
\end{array}
\]

Answer: 39 more tiles

Score Point 2 (out of 2 points)

This response demonstrates a thorough understanding of the mathematical concepts in the task. The total area of the floor and the number of additional tiles are calculated correctly. The response is complete and correct.
Ms. Peterson wants to replace all the floor tiles in her kitchen. The kitchen floor is 12 feet long and 7 feet wide. If Ms. Peterson already has 45 one-foot square tiles, how many more one-foot square tiles does she need to completely cover the kitchen floor?

Show your work.

\[
\begin{array}{c}
78 \\
-14 \\
\hline
45 \\
\hline
38
\end{array}
\]

Answer ___38___ more tiles

Score Point 1 (out of 2 points)

This response demonstrates only a partial understanding of the mathematical concepts in the task. The total area of the floor is calculated correctly using repeated addition; however, an incorrect number of additional tiles is determined due to a subtraction error. This response contains an incorrect solution but applies an appropriate process.
Score Point 1 (out of 2 points)

This response demonstrates only a partial understanding of the mathematical concepts in the task. The total area of the floor is calculated correctly, but the number of additional tiles is not addressed. This response correctly addresses only some elements of the task.
Ms. Peterson wants to replace all the floor tiles in her kitchen. The kitchen floor is 12 feet long and 7 feet wide. If Ms. Peterson already has 45 one-foot square tiles, how many more one-foot square tiles does she need to completely cover the kitchen floor?

*Show your work.*

\[
\begin{array}{c}
\times \\
12 \\
7 \\
\hline
84 \\
\end{array} \quad \begin{array}{c}
- \\
84 \\
54 \\
\hline
30 \\
\end{array}
\]

*Answer* 30 more tiles

**Score Point 1 (out of 2 points)**

This response demonstrates only a partial understanding of the mathematical concepts in the task. The total area of the floor is calculated correctly; however, the number of additional tiles needed is incorrect as the subtraction is set up incorrectly because the 45 existing tiles is transposed as 54. This response correctly addresses only some elements of the task.
Ms. Peterson wants to replace all the floor tiles in her kitchen. The kitchen floor is 12 feet long and 7 feet wide. If Ms. Peterson already has 45 one-foot square tiles, how many more one-foot square tiles does she need to completely cover the kitchen floor?

Show your work.

\[
\begin{align*}
7 & \quad 14 \quad 21 \quad 28 \quad 35 \quad 42 \\
5 & \quad 10 \quad 15 \quad 20 \quad 25 \quad 30 \quad 35 \\
& \quad 40 \quad 45 \quad 50
\end{align*}
\]

\[
12 \times 7 = 84.5 \times 8 = 45
\]

Answer: 96 more tiles

Score Point 0 (out of 2 points)

Although a correct process is used to determine the total area, the answer is incorrect due to a calculation error, and the work involving the 45 existing tiles is irrelevant. Holistically, this response is not sufficient to demonstrate even a limited understanding of the mathematical concepts embodied in the task.
Ms. Peterson wants to replace all the floor tiles in her kitchen. The kitchen floor is 12 feet long and 7 feet wide. If Ms. Peterson already has 45 one-foot square tiles, how many more one-foot square tiles does she need to completely cover the kitchen floor?

*Show your work.*

She would need 82 more one-foot square tiles.

1 foot = 12 inches

**Answer:** 82 more tiles

---

**Score Point 0 (out of 2 points)**

This response is not sufficient to demonstrate even a limited understanding of the mathematical concepts in the task. The answer is incorrect and the work is irrelevant.
The height of Mountain P is 1,086 feet. The height of Mountain Q is 4 times the height of Mountain P. The area model shown below represents one way to find the height of Mountain Q.

\[
\begin{array}{ccc}
1,000 & B & 6 \\
4 & A & 320 & C \\
\end{array}
\]

What are the missing values for A, B, and C in the area model?

*Show your work.*

**Answer**  
A _____________, B _____________, and C _____________

What is the height, in feet, of Mountain Q?  
*Show your work.*

**Answer** _____________ feet
The height of Mountain P is 1,086 feet. The height of Mountain Q is 4 times the height of Mountain P. The area model shown below represents one way to find the height of Mountain Q.

\[
\begin{array}{ccc}
1,000 & B & 6 \\
4 & A & 320 & C \\
\end{array}
\]

What are the missing values for A, B, and C in the area model?

*Show your work.*

A: \(4 \times 1,000 = 4,000\)

B: \(320 \div 4 = 80\) \ or \ \(1,086 - (1,000 + 6) = 80\)

C: \(4 \times 6 = 24\)

*Answer* \(A\) \underline{4,000}, \(B\) \underline{80}, and \(C\) \underline{24}

What is the height, in feet, of Mountain Q?

*Show your work.*

\(4,000 + 320 + 24 = 4,344\)

\(or\)

\(1,086 \times 4 = 4,344\)

*or other valid process*

*Answer* \(4,344\) feet
The height of Mountain P is 1,086 feet. The height of Mountain Q is 4 times the height of Mountain P. The area model shown below represents one way to find the height of Mountain Q.

\[
\begin{array}{c|c|c}
1,000 & B & 6 \\
4 & A & 320 \\
\end{array}
\]

What are the missing values for A, B, and C in the area model?

**Show your work.**

\[
\begin{align*}
b &= 80 \\
c &= 24 \\
a &= 4000
\end{align*}
\]

\[
\begin{align*}
320 \div 4 &= 80 \\
6 \times 4 &= 24 \\
1000 \times 4 &= 4000
\end{align*}
\]

**Answer:**

\[
\begin{array}{c|c|c}
4000 & 80 & 24 \\
\end{array}
\]

What is the height, in feet, of Mountain Q?

**Show your work.**

\[
\begin{align*}
1000 \times 4 &= 4000 \text{ feet} \\
80 \times 4 &= 320 \text{ feet} \\
6 \times 4 &= 24 \text{ feet}
\end{align*}
\]

\[
(4000 + 320) + 24 = 4344 \text{ feet}
\]

**Answer:** 4344 feet

**Score Point 3 (out of 3 points)**

This response demonstrates a thorough understanding of the mathematical concepts in the task. The missing values for the area model and the height of Mountain Q are calculated correctly. The response is complete and correct.
The height of Mountain P is 1,086 feet. The height of Mountain Q is 4 times the height of Mountain P. The area model shown below represents one way to find the height of Mountain Q.

\[
\begin{array}{|c|c|c|}
\hline
& 1,000 & B \ 6 \\
\hline
4 & A & 320 \ C \\
\hline
\end{array}
\]

What are the missing values for A, B, and C in the area model?

Show your work.

Answer A 4,000, B 80, and C 24

What is the height, in feet, of Mountain Q?

Show your work.

Answer 4,344 feet

---

Score Point 3 (out of 3 points)

This response demonstrates a thorough understanding of the mathematical concepts in the task. The missing values for the area model and the height of Mountain Q are calculated correctly. The response is complete and correct.
The height of Mountain P is 1086 feet. The height of Mountain Q is 4 times the height of Mountain P. The area model shown below represents one way to find the height of Mountain Q.

What are the missing values for A, B, and C in the area model?

Show your work.

Answer: A 1000, B 80, and C 24

What is the height, in feet, of Mountain Q?

Show your work.

Answer: 1344 feet

Score Point 3 (out of 3 points)

This response demonstrates a thorough understanding of the mathematical concepts in the task. The missing values for the area model are calculated correctly and two distinct methods are correctly used to solve for the height of Mountain Q. The response is complete and correct.
Score Point 2 (out of 3 points)

This response demonstrates a partial understanding of the mathematical concepts in the task. The missing values A and C are correctly calculated, but B is incorrectly calculated. The height of Mountain Q is correctly calculated using $A + 320 + C$ and $1,086 \times 4$. This response reflects a minor misunderstanding of the underlying procedures.
The height of Mountain P is 1,086 feet. The height of Mountain Q is 4 times the height of Mountain P. The area model shown below represents one way to find the height of Mountain Q.

\[
\begin{array}{ccc}
1,000 & B & 6 \\
4 & A & 320 & C
\end{array}
\]

What are the missing values for A, B, and C in the area model?

Show your work.

\[
\begin{array}{c}
1,000 \times 80 \\
\frac{4,000}{320} \times 4
\end{array}
\]

Answer: A 4,000, B 320, and C 24

What is the height, in feet, of Mountain Q?

Show your work.

\[
\begin{array}{c}
4,000 \\
320 \\
+ 24 \\
\hline
4,344
\end{array}
\]

Answer: 4,344 feet

Score Point 2 (out of 3 points)

This response demonstrates a partial understanding of the mathematical concepts in the task. The missing values for the area model are calculated correctly, but the incorrect value for B is written. The height of Mountain Q is calculated correctly using the area model. This response contains an incorrect solution but applies sound procedures.
The height of Mountain P is 1,086 feet. The height of Mountain Q is 4 times the height of Mountain P. The area model shown below represents one way to find the height of Mountain Q.

\[
\begin{array}{c}
1,000 & B & 6 \\
4 & A & 320 & C \\
\end{array}
\]

What are the missing values for A, B, and C in the area model?

**Show your work.**

\[
\begin{align*}
A &= 4000 \\
B &= 80 \\
C &= \times \frac{1000}{4} \times \frac{80}{4} \times \frac{6}{24}
\end{align*}
\]

**Answer** A \[4000\] , B \[80\] , and C \[24\]

What is the height, in feet, of Mountain Q?

**Show your work.**

\[
\begin{align*}
&\frac{4000}{80} + \frac{24}{4080} \\
&\frac{4080}{4104}
\end{align*}
\]

**Answer** 4104 feet

---

**Score Point 2 (out of 3 points)**

This response demonstrates a partial understanding of the mathematical concepts in the task. The missing values of A, B, and C are calculated correctly; however, the height of Mountain Q is determined incorrectly. The height should be found using \(A + 320 + C\), not \(A + B + C\). This response reflects a minor misunderstanding of the underlying procedures.
GUIDE PAPER 7

The height of Mountain P is 1,086 feet. The height of Mountain Q is 4 times the height of Mountain P. The area model shown below represents one way to find the height of Mountain Q.

\[
\begin{array}{c}
1,000 \\
4 \\
\end{array}
\begin{array}{c}
B \\
A \\
\end{array}
\begin{array}{c}
6 \\
320 \\
C \\
\end{array}
\]

What are the missing values for A, B, and C in the area model?

*Show your work.*

A: stands for 4,000 B: stands for 80 and C: stands for 24.

\[
\text{Answer: } A, B, \text{ and } C
\]

What is the height, in feet, of Mountain Q?

*Show your work.*

so my head is saying that i have to add so im gonna say that \(4,000 + 80 + 24 = 4,184\)

\[
\text{Answer: 4,184 feet}
\]

Score Point 1 (out of 3 points)

This response demonstrates a limited understanding of the mathematical concepts in this task. Although the values of A, B, and C are correct, there is no work to show how they were calculated. The height of Mountain Q should be found using \(A + 320 + C\), not \(A + B + C\), but holistically this does demonstrate some limited understanding that three values from the area model must be added to determine the height.
The height of Mountain P is 1,086 feet. The height of Mountain Q is 4 times the height of Mountain P. The area model shown below represents one way to find the height of Mountain Q.

\[
\begin{align*}
1,000 & \quad B \quad 6 \\
4 & \quad A \quad 320 \quad C
\end{align*}
\]

What are the missing values for A, B, and C in the area model?

\textit{Show your work.}

\[\text{Answer:} \ A = 4000, \ B = 320, \ \text{and} \ C = 24\]

What is the height, in feet, of Mountain Q?

\textit{Show your work.}

\[
\begin{align*}
\text{Answer:} & \quad 4344 \text{ feet}
\end{align*}
\]

\textbf{Score Point 1 (out of 3 points)}

This response demonstrates a limited understanding of the mathematical concepts in this task. Although the values of A and C are correct, there is no work to show how they were calculated. The height of Mountain Q is found correctly using \(A + 320 + C\). This response contains the correct solution but the required work is limited.
GUIDE PAPER 9

The height of Mountain P is 1,086 feet. The height of Mountain Q is 4 times the height of Mountain P. The area model shown below represents one way to find the height of Mountain Q.

\[
\begin{array}{ccc}
1,000 & B & 6 \\
4 & A & 320 & C
\end{array}
\]

What are the missing values for A, B, and C in the area model?

Show your work.

\[
\begin{align*}
A &= 1,000 \times 4 = 1,004 \\
B &= 320 \times 4 = 1,284 \\
C &= 6 \times 4 = 24
\end{align*}
\]

Answer: \( A = 1,004, \ B = 324, \) and \( C = 10 \)

What is the height, in feet, of Mountain Q?

Show your work.

\[
\begin{align*}
1,004 \\
+324 \\
\hline
1,328
\end{align*}
\]

\[
\begin{align*}
1,328 \\
+10 \\
\hline
1,338
\end{align*}
\]

Answer: 1,338 feet

Score Point 1 (out of 3 points)

This response demonstrates a limited understanding of the mathematical concepts in this task. Invalid procedures are used to find the incorrect values of A, B, and C. The height of Mountain Q should be found using \( A + 320 + C \), not \( A + B + C \), but holistically this does demonstrate some limited understanding that three values from the area model must be added to determine the height.
The height of Mountain P is 1,086 feet. The height of Mountain Q is 4 times the height of Mountain P. The area model shown below represents one way to find the height of Mountain Q.

\[
\begin{array}{lll}
1,000 & \text{B} & 6 \\
4 & \text{A} & 320 & \text{C}
\end{array}
\]

What are the missing values for A, B, and C in the area model?

*Show your work.*

\[
A = 4,000 \quad B = 320 \quad C = 24
\]

*Answer*

A \[4,000\], B \[320\], and C \[24\]

What is the height, in feet, of Mountain Q?

*Show your work.*

\[160,200.96\]

*Answer*

160,200.96 feet

---

**Score Point 0 (out of 3 points)**

This response is not sufficient to demonstrate even a limited understanding of the mathematical concepts in the task. Although answers A and C are correct, per Scoring Policy #3, when students are directed to show work, a correct answer with no work receives no credit.
The height of Mountain P is 1,086 feet. The height of Mountain Q is 4 times the height of Mountain P. The area model shown below represents one way to find the height of Mountain Q.

\[
\begin{array}{ccc}
1,000 & B & 6 \\
4 & A & 320 & C
\end{array}
\]

What are the missing values for A, B, and C in the area model?

Show your work.

Answer: A \(= 1,000\), B \(= 800\), and C \(= 24\).

What is the height, in feet, of Mountain Q?

Show your work.

Answer: \(= 2,172\) feet

Score Point 0 (out of 3 points)

This response is not sufficient to demonstrate even a limited understanding of the mathematical concepts in the task. Although answers A and C are correct, there is no work to show how they were calculated. The work and solution for the height of Mountain Q are incorrect.