Current Filters
Search Within Results
Grades
Resource Type
Common Core: ELA
Common Core: Math
264 Results

 Student Outcomes Students determine the area of a cyclic quadrilateral as a function of its side lengths and the acute angle formed by its diagonals. Students prove Ptolemy’s theorem, which states...

 Student Outcomes Students show that a quadrilateral is cyclic if and only if its opposite angles are supplementary. Students derive and apply the area of cyclic quadrilateral ABCD as 1/2 AB·CD·sin(w...

 Student Outcomes Given a circle, students find the equations of two lines tangent to the circle with specified slopes. Given a circle and a point outside the circle, students find the equation of the...

 Student Outcomes Students complete the square in order to write the equation of a circle in centerradius form. Students recognize when a quadratic in x and y is the equation for a circle.

 Student Outcomes Students write the equation for a circle in centerradius form, (x  a)2 (y  b)2 = r2 using the Pythagorean theorem or the distance formula. Students write the equation of a circle...

 Student Outcomes Students find “missing lengths” in circlesecant or circlesecanttangent diagrams.

 Student Outcomes Students find the measures of angle/arcs and chords in figures that include two secant lines meeting outside a circle, where the measures must be inferred from other data.

 Student Outcomes Students understand that an angle whose vertex lies in the interior of a circle intersects the circle in two points and that the edges of the angles are contained within two secant...

 Student Outcomes Students use the inscribed angle theorem to prove other theorems in its family (different angle and arc configurations and an arc intercepted by an angle at least one of whose rays...

 Student Outcomes Students use tangent segments and radii of circles to conjecture and prove geometric statements, especially those that rely on the congruency of tangent segments to a circle from a...

 Student Outcomes Students discover that a line is tangent to a circle at a given point if it is perpendicular to the radius drawn to that point. Students construct tangents to a circle through a...

 Student Outcomes When students are provided with the angle measure of the arc and the length of the radius of the circle, they understand how to determine the length of an arc and the area of a...

 Student Outcomes Congruent chords have congruent arcs, and the converse is true. Arcs between parallel chords are congruent.

 Student Outcomes Define the angle measure of arcs, and understand that arcs of equal angle measure are similar. Restate and understand the inscribed angle theorem in terms of arcs: The measure of an...

 Student Outcomes Use the inscribed angle theorem to find the measures of unknown angles. Prove relationships between inscribed angles and central angles.

 Student Outcomes Prove the inscribed angle theorem: The measure of a central angle is twice the measure of any inscribed angle that intercepts the same arc as the central angle. Recognize and use...

 Student Outcomes Explore the relationship between inscribed angles and central angles and their intercepted arcs.

 Student Outcomes Inscribe a rectangle in a circle. Understand the symmetries of inscribed rectangles across a diameter.

 Student Outcomes Identify the relationships between the diameters of a circle and other chords of the circle.

 Student Outcomes Using observations from a pushing puzzle, explore the converse of Thales' theorem: If triangle ABC is a right triangle, then A, B, and C are three distinct points on a circle with...

 Student Outcomes Visualize crosssections of threedimensional objects. Have an understanding of how a 3D printer works and its relation to Cavalieri’s principle.

 Student Outcomes Students give an informal argument using Cavalieri’s principle for the volume formula of a sphere and use thevolume formula to derive a formula for the surface area of a sphere.

 Student Outcomes Students use Cavalieri’s principle and the cone cross section theorem to show that a general pyramid or cone has volume 1/3Bh where B is the area of the base and h is the height by...

 Student Outcomes Students understand the principle of parallel slices in the plane, and understand Cavalieri’s principle as ageneralization of the principle of parallel slices. Students use Cavalieri...